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1. Introduction

The intimate relation between the number of supersymmetries and the target space geome-
try for supersymmetric sigma model [fl] has been fruitfully exploited over the years. Here we
are interested in the four-dimensional N’ = 2 models whose target space is hyperkihler [J].

There are two methods for constructing new models from old ones; the Legendre
transform and the hyperkahler reduction [B, fl], both of which have been reformulated in
the manifest V' = 2 supersymmetric setting of projective superspace.

Projective superspace extends superspace at each point by an additional bosonic coor-
dinate ¢ which is a projective coordinate on CP?; actions are written using contour integrals
over (, and reality conditions are imposed using complex conjugation of ( composed with
the antipodal map [ f].

In a recent paper [fJ], we constructed, building in part on earlier work [0, [(1]], V' = 2
supersymmetric models on the tangent bundles of a large number of the Hermitian sym-
metric spaces as well as, using the generalized Legendre transform [f], the hyperkihler
metrics on the corresponding cotangent bundles. Our approach rested on finding solutions
to the A/ = 2 projective superspace auxiliary field equations in Kahler normal coordinates
at a point and then extending the solutions using cleverly chosen coset representatives.
Although this method is perfectly viable, it becomes very cumbersome when more com-
plicated spaces involving the exceptional groups are considered. For this reason we have
changed the perspective in this paper. Our discussion is based on the solution to the aux-
iliary field equations originally described in [0, [L1]]. Starting from this solution and the
duly modified second supersymmetry transformation allows us to completely determine the
tangent-bundle action. We also describe how to find the dual cotangent-bundle action.



As illustrations of our method, we rederive some of the results in [[J]. As a new
application, we present a model on the tangent bundle of Eg/SO(10) x U(1) as well as the
hyperkéahler potential on the corresponding cotangent bundle.

The organization of the paper is as follows. In section two we describe the back-
ground material on N' = 2 sigma models formulated using projective superspace. Our
general construction is presented in section three. Section four contains the application to
Es/SO(10) x U(1), and in section five we give an alternative description of our Lagrangian,
which leads to very direct relations to previous results but seems to have a more limited
applicability. Examples are found in section five and in appendix A. Appendix B contains

an explicit derivation of a relation used in section four.

2. Background material on A/ = 2 sigma models

We are interested in a family of 4D N = 2 off-shell supersymmetric nonlinear sigma-models
that are described in ordinary A = 1 superspace by the action'

ST, ¥ = % yfd—f /d%K(Tf(g),TJ(g)) . (2.1)

The action is formulated in terms of the so-called polar multiplet [, [ (see also [}]), one of
the most interesting A/ = 2 multiplets living in projective superspace. The polar multiplet
is described by an arctic superfield Y () and antarctic superfield T(C ) that are generated
by an infinite set of ordinary N/ = 1 superfields:

T =) To("=0+XC+0(%), TQ)=> Ta(-0O". (2.2)
n=0 n=0

Here @ is chiral, ¥ complex linear,
- A2
D.®=0, D*¥x =0, (2.3)

and the remaining component superfields are unconstrained complex superfields. The
above theory occurs as a minimal N = 2 extension of the general four-dimensional V' = 1

supersymmetric nonlinear sigma model [fl]
S[®, d] = /d8z K(®,87), (2.4)

with K the Kéhler potential of a Kahler manifold M.
The extended supersymmetric sigma model (R.1)) inherits all the geometric features of
its N = 1 predecessor (R.4). The Kihler invariance of the latter,

K(®,®) — K@) + A(®)+A(D) (2.5)

turns into

K(Y,T) — K(Y,T) + A(T) + A(T) (2.6)

The study of such models in this context was initiated in , 1Ld, @] They correspond to a subclass
of the general hypermultiplet theories in projective superspace [fl, [1-



for the model (R.1)). A holomorphic reparametrization of the Kihler manifold,

ol — (@), (2.7)
has the following counterpart
Q) — (T (2.8)
in the N/ = 2 case. Therefore, the physical superfields of the N' = 2 theory
dr’(¢)
! ‘ — ol ‘ e 2.9
Gl s (2:9)

should be regarded, respectively, as coordinates of a point in the Kéhler manifold and a
tangent vector at the same point. Thus the variables (®!,%”7) parametrize the tangent
bundle T M of the Kihler manifold M [[[3].

To describe the theory in terms of the physical superfields ® and ¥ only, all the auxil-
iary superfields have to be eliminated with the aid of the corresponding algebraic equations

of motion
d¢ ., OK(T,T) ¢ ., OK(T,T)
Let T4 (¢) = Y4(¢; @, ®,%, ) denote a unique solution subject to the initial conditions
T,.(0)=®, T.(0)=3 . (2.11)
For a general Kahler manifold M, the auxiliary superfields Y5, Ys,..., and their con-

jugates, can be eliminated only perturbatively. Their elimination can be carried out using
the ansatz [[LJ]

o
! = ZGIJI_“JWL“LP(@, I DISEINND yLarD SIS Y n>2. (2.12)
p=0

Upon elimination of the auxiliary superfields, the action (R.1)) takes the form [[[d, [LT]

Sw[®,%] = /d% {K(@,@) + > Lyg g, (@,@)80 B S }

n=1
o0
= /d% {K(cp,ci) +Z£<n>(q>,i>,z,i)} , (2.13)
n=1
where L£;7 = —g;7(®,®) and the tensors L;,..; 7.7, for n > 1 are functions of the

Riemann curvature R; 77 (®,®) and its covariant derivatives. Each term in the action
contains equal powers of ¥ and ¥, since the original model (R.1]) is invariant under rigid
U(1) transformations [[L0]]

TC) — YT(E%) = Tuz) — ™ T,(2). (2.14)

The complex linear tangent variables ¥’s in (R.13) can be dualized into chiral one-
forms, in accordance with the generalized Legendre transform [ff]. The target space for the
model thus obtained is (an open domain of the zero section) of the cotangent bundle of the

Kihler manifold M [[L(].



3. General construction

In what follows, we restrict our consideration to the case when M is a Hermitian symmetric
space, hence

ViRpy 0, = Vil g5, =0 (3.1)

Then, the algebraic equations of motion (R.1(]) are known to be equivalent to the holomor-
phic geodesic equation (with complex evolution parameter) [[[J, [L1]

d*T1(¢)
ac?

dr{(¢) dY¥(Q)
d¢ d¢

under the same initial conditions (R.11). Here I'' ;. (®,®) are the Christoffel symbols for
the Kihler metric g; 7(®, ®) = §;0;K (®,®). In particular, we have

+ T (1200, 2) =0, (32)

1 _
1L = —§PIJK(<I>,<I>) DI (3.3)

According to the principles of projective superspace [E, Iﬂ], the action (E) is invariant
under N = 2 supersymmetry transformations

0T(¢) =1 (7 Q0 + 5Q7) T(C) (3.4)

when T(¢) is viewed as a N' = 2 superfield. However, since the action is given in N/ =1
superspace, it is only the /' = 1 supersymmetry which is manifestly realized. The second
hidden supersymmetry can be shown to act on the physical superfields ® and ¥ as follows

(see, e.g., [H):
80 =2,D%%, 0% = —c*Dy® + £, DT, . (3.5)

Upon elimination of the auxiliary superfields, the action (R.13), which is associated with
the hermitian symmetric space M, is invariant under

. 1 _. _
60T = 5, D!, oxT = —e D" — 2, DI (2, 0) 2SR} L (3.6)

It turns out that the requirement of invariance under these transformations allows one to
uniquely determine, by making use of (B.1), the tangent-bundle action (R.13). One finds

L0 = —g,5(0,8)x/57

£+ = Eh...lnﬂjl..jnﬂzll D SLAEED SEINNS eAes (3.7)
n Int15Jn _ LI InJ SJn
- _mﬁh---ln—1Lj1“-an R Rln-HJn-HIn LR

It is useful to introduce (conjugate to each other) first-order differential operators

lokel J T I 9
Rz,g = —52 XY Ry ((I),(I))E 7
5 Ll kel Jie &) el 0 lokel p J (q &\ ol 9



Since the metric and the curvature tensor are covariantly constant, we have
Vi, Villy.ryyd, =0, (3.9)
and hence
Rys LM =Ry 5 LM . (3.10)

Now, the second relation in (B.7) can be rewritten as follows:

1
(4D — 1 po o
c — Res £ (3.11)

This leads to

o0 _ _ o0

L(®,®,5,%) = Ly 1 5.5, (2,080 gyl g/ =30
n=1 n=1

_eRes 1

J I
— g, Tt (3.12)
1J RE,S

It is useful to rewrite this Lagrangian using an auxiliary variable ¢:
1 _
L£(2,9,%,%) = —/ dt g, ;57 Resyl (3.13)
0

The relations (B.7) can be shown to be equivalent to the first-order differential equation

which is obeyed by £(®, ®, %, ¥) given in (B13). Indeed, the action (R.13) varies under (B-q)
as follows:

oL oL I
5Sw[@, %] = /dgz {W - aE—KrﬁJzJ}%D »!

1 oL oL a7
_/dgz {aRKJLIﬁ2K2L+E+gUEI}edD d/ 4 c.c. (3.15)

Here the variation in the first line vanishes, since the curvature is covariantly constant.
To construct a dual formulation, consider the first-order action

S = /dSZ {K(@,@) +£(2,8,%,5) +\I/IEI+\I/;Sf} , (3.16)

where the tangent vector ! is now complex unconstrained, while the one-form ¥ is chiral,
D ¥ = 0. This action can be shown to be invariant under the following supersymmetry
transformations:

1.
50 = 5 D*{e0 =},

1 _. _ 1 _ _
5x! = —cop @l — 5s—dDO‘{rfJK(<1>, ) EJEK} — 5007 (2,9) 27 D?5F,

SU; = %[ﬂ{%m(@,@)} n %DQ{EP[?,(@@) EJ} U . (3.17)



Varying ¥’s and their conjugates in (B.14) using (B.1J) and properties of the curvatures of
Hermitian symmetric spaces gives

U, = g;7eRen8) (3.18)

Inverting these relations should lead to the cotangent-bundle action
Seep[®, U] = /dSZ { K(®,3) +H(®, D, sz,\I/)} : (3.19)

where

oy — —
H(®,@,0,0) = > HU /oI (, )Ty, . U, Uy Ty

n=1

H' (®,8) = ¢"7(®,d) . (3.20)

On general grounds, the cotangent-bundle action should be invariant under the super-
symmetry transformations induced from (B.17)

I leor—aria & 7
60" = SDXeO% (0,0, v, )},
10— = L 2o (=K I\ v (&
o0y = —5 D0 K1(0,9) | + 3D {01 (0.9) B (0,8, 0,9) Wi, (3.21)

with

0 (@, 8,0, ) = 0 H (@B, T) (3.22)
I

The requirement of invariance under such transformations can be shown to be equivalent
to the following nonlinear equation on H:

1 _
zfgfj—iszLRKij\pI:\pj. (3.23)

This equation also follows directly from (B.14) using the definition of the ¥’s, or if one wants,
as a consequence of the superspace Legendre transform. (It can be explicitly checked that
the relation is satisfied for the expressions in (B.1§), as it should).

The relation ([3.23) allows us to uniquely reconstruct H(®, ®, ¥, V) formally defined
in (B20).

As a simple illustration of the formalism developed, in appendix A we re-derive the
model on the tangent bundle of CP". The actual power of our method is revealed in next

section where it is applied to derive a A/ = 2 supersymmetric sigma model on the tangent

bundle of Eg/SO(10) x U(1).



4. The hermitian symmetric space Eg/ SO(10) X U(1)

The Kéhler potential for the hermitian symmetric space Eg/SO(10) x U(1) was computed
by several groups [[[4-[7] in different but equivalent forms. Here we will use the Kihler
potential derived in ref. [[[7] with the aid of the techniques developed in [[§]. In order to
comply with the notation adopted in [I7], we will use Greek letters to label indices, lower
indices for base-space (®! — ®,) and tangent (X! — X,) variables, while upper indices
will be used for one-forms (¥; — U).

Locally, the symmetric space Eg/ SO(10) x U(1) can be described by complex variables
®,, transforming in the spinor representation 16 of SO(10) and their conjugates.

D, O 1= (®,)*, a=1,...,16 . (4.1)

The Kahler potential is
_ _ 1 - _
K(®,®)=1In <1 + PP, + g(@“(JA)agqﬁ)(@,y(ag)%@a)) , A=1,...10 (4.2

where (04)ap = (04)3a are the 16 x 16 sigma-matrices which generate, along with their
Hermitian-conjugates, (UL)O‘B, the ten-dimensional Dirac matrices in the Weyl representa-

tion. The sigma-matrices obey the anti-commutation relations
(O‘AO'TB + 0302)0[6 =204B6,° . (4.3)

The Kahler metric can be shown to be

O’°K 1 1 _
A E{é‘f + 3o ¥ s
«
1 T 1704 Ty(adT T 1 T \ad TT = &
| = 80— 2%(04)5,27(2 04 P)—(04)" 85 Ps(2 04 2)
1 _ I
—1—6<ag>%a<m>m¢ﬂ<¢%2¢>@TUB@)) } , (4.4)

where Z = 1+<T>T<I>+%((I>TJLCI>)(<T>TJACT>). Here we have used the fact that o4 is symmetric.
Let us calculate the Lagrangian (B.19) for the case under consideration. In our notation,
the first-order differential operator defined in (B.19) is

0
O,

1o _
Rss = _52@52@“&%@ 1)o (4.5)

where (71", = (go‘ﬁ)_1 is the inverse metric of g%, that is go‘v(g_l)ﬂfﬁ = 0. Since we are
considering a symmetric space, it is actually sufficient to carry out the calculations of our
interest at a particular point, say at ® = 0. The Riemann tensor at ® = 0 can be shown
to be

oY o —I\A 9k .«
R oo = 9959% — (97 ) 0" 9009 s oo
1
= 05", + g(aA)ﬁé(aL)m — 64057 . (4.6)



Now, simple calculations give

1 _
Ry 5%a = |80 — 7 (ET0a)a(210}2),

1 - 1
(Rs,5)*Sa = 2/8['Sa — 5(ET0a)a 2 (570} %) - 1Zal8Tol 2P,

3 = 3
(Ry.5)*Sa = 6|2[0%, — 5;2\4(2%,4)@(2%;2) - iza\zmz%jlzy?

3 _
+1—6(2TUA)Q(2TULE)\2TUEEP : (4.7)

where |22 = ¥°%, and |ETO'LE|2 = <ETO'LE> (£T04%). Here we have used the following
identity

(6%
(ohe)" (ech@) =0 (4.8)
that follows from the Fierz identity
1

(eailw) (WTLW) =-3 <60:r477> <1/10i11/1> . (4.9)
Making use of the above results gives

- _ _.eRss 1

LE®=0,8=0,%,5) = —g%5 N
Res d=5=0

1 1 1 1
=~ (3 — 15| + =Tk B - 5P + S [SPE 2P
1

1 1
_ 2B 2Tyt 2
1=+ 5SS ol B -

S Tol SR sTel s + - (4.10)
Looking at the expression obtained it is tempting to conjecture

_ _ 1
L(®=0,0=0,%3)=1In <1 — =2+ §|2Taf42|2> . (4.11)

The latter relation extends to an arbitrary point ® of the base manifold by replacing

S 1 1 - 1 _ _
B2 = ¢32.8?, SIETORBPE - S(g%TaI) + JRY NI . (412)
Then one gets
- _ _.eRss 1
ﬁ(Q)’@’E’E) = _gaﬁzﬁeflzi, Y
2,5

5 1 _ 1 e
=In (1 — %527 + 5(g%zazﬁ)2 + ZRQBV(;EQEQEVX)&) . (4.13)

This is actually the correct result for £(®,®, ¥, ). Indeed, one can check that the r.h.s.
of (.13) satisfies the master equation (B.14) which in the present case reads
s OL oL

oy, P T gz tObYe =0 (4.14)

1 4 _
§R 575(9 1)



In order to prove this claim, it is sufficient to restrict our consideration to ® = 0. For the

first term in the Lh.s. of (.14), one finds

1 5 OC

_ 1
QRaﬁwé(g D) ea—zezaz’y

1 = 1
= (2zﬁ|z|2—§<mz>ﬁ<z%zz>—szzTaLzF),u.m

®=0

and this contribution exactly cancels against the other terms in ({.14).
Let us dualize the tangent-bundle action. For this purpose we consider the following
first-order action

1, . - 1. L
S = /d8 { (®,®) 4 In (1 — g%UU" + +5(9 LULUP)? + iR BV(SUO(UBUVU‘S)
+UL U + U“@a} , (4.16)

where the tangent variables U, are complex unconstrained superfields, and the one-forms
U are chiral superfields, Dy ¥ = 0. The variables U’s and U’s can be eliminated with the
aid of their algebraic equations of motion. This turns the superfield Lagrangian into the
hyperkéahler potential

H(®,3,9,¥) = K(®,)—In <A+ YA+ ()00 )+ A+ A+ (), w00,
2((g7 1) WP, )? + R0, WP 0, U0

_ _ , (4.17)
A+ \/A + (g7 )P,
where RQB’Y(S = (9_1)aa/ (9_1)65(9_1)1, (g _1)(SIR 5' 5> and
1 1 - — o
A= \/Z + (g )T+ 2((g7 )% T L)? + ROGTL WO, W0 . (4.18)

The derivation of the above results is given in appendix [B.

Similar to eq. (JEI4) in the tangent-bundle formulation, one can check that the hy-
perkéhler potential () satisfies the equation (), which in the present case takes the
form

1 s e =
Sag% — izazvRaﬁg(g 1o W =Ty (4.19)

To prove this, we again set ® = 0. Then, the Lh.s. in (£.19) becomes

Y5 — % (-2(2@“)25 + %(UAQ)B(ETULEO : (4.20)

Making here use of (B.3), we can express ¥ in terms of 3. Then we have

1

o0 é <25 B Z(UAE)5(2T022)> : (4.21)

€

1 _
Y5 — 52(127}20‘675(9 1) ge

where (2 is given in (B.1). Because of (B.9), the expression obtained is exactly ¥ at ® = 0.



5. An alternative formulation

In this section we give a reformulation of the Lagrangian defined by (B.7) which more
directly relates it to our previous results. The reformulation requires certain identities to
be satisfied for products of curvatures; we have not been able to determine if these identities
are for a general Hermitean symmetric space. We define the operator R by

1 -
R := 52“2’7}2 - AS (5.1)

abc

where M is the generator of the relevant structure group and acts on ¥ as a transformation
of a vector: [XZM?, ¢ = X¢%. Here a and a are tangent space indices. Using this we
may in certain cases re-write the Lagrangian (B.12) as

L(D,3,%,5) = —n; Sl In(l + R)R™ 15 (5.2)

where 7,5 is the tangent space metric. The inverse R~ is formal at this stage, but in the
concrete examples that we want to consider it is always possible to make sense of it. The

structure (p.2) is possible when the curvature satisfies

o N M o N M

RNJlMJgR[1j3[2 RI4J413 X RNJIIIJQRIQJ?,M R14j4f3 (5'3)

when symmetrized in I ... I, and in J; ... J4, and similar relations for higher products of
curvatures. This is indeed true for the case of CP" discussed in appendix A. We find that,

at the origin,

RR™1xe = 3@ (5.4)
if we take
-1 72 c b

which inserted in (.9) leads to the Lagrangian
2
L(D,B,5%,5) = —%ia In(1 + R)x® (5.6)

where all contractions and lowering of indices is done using 7,5 = d4, and we have

1
RaEcJ = _ﬁ (6ab6cd + 5ad5bc) > (57)

all evaluated at the origin (see appendix A for more details). Evaluating the expression (.4)
and re-expressing the result at an arbitrary point, we recover the standard form of the

Lagrangian; (A.g).
Another case where the appropriate identities are satisfied is for the SO(n+2)/SO(n) x
SO(2)-model discussed in section 6 in [ff]. Here the metric at a point is as in the previous

example, the curvature tensor at the origin is

RQBCJ =2 (_5ab5cd 4+ SacOpd — 5ad5bc) , a=1,...,n. (5.8)

,10,



We may take
1 _
R = —ﬁzbzczwcb (5.9)

to yield the following form of the Lagrangian
_ _ 1 _ _
L(D,D,33) = ﬁEa In(1+R)X%. (5.10)
Evaluating the expression (p.10) and re-expressing the result at an arbitrary point, we

recover the standard form of the Lagrangian [ff.
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A. Example: complex projective space

As a simple example, consider the complex projective space CP™ = SU(n + 1)/ U(n) for
which we have

= 2617 2ol e/

- 1 —
K(®,® :r21n<1—|——<I>L<I>L>, g;7(®,®) = — —— . (A1
(@,) - ) = i e (A
where I,J =1,...,n. It is sufficient to compute the Riemann curvature at ® = 0
1
thﬂzjz =0 = Khjllzjz =0 = _ﬁ{éha’lé[zh + 611J2512J1} ) (A2)
with all results below corresponding to the choice ® = 0. One gets
_ - 9 .
nhgink R11j112j2 - _ﬁ|2|22h ) |E|2 = 61J212J’ (A3)
and hence
From here
ns I | ’E‘Qn I
and hence
e -1 1 T\ sl
—grjz s Y=r'ln(1l-—5g5(®,0) XX . (A.6)
2,8 r

This agrees with the previous calculations [[L1, [[9].

— 11 —



B. Derivation of (H.17)

This appendix is devoted to the derivation of the hyperkéahler potential () Since
the base manifold is symmetric space, it is sufficient to perform the dualization, for the
action ([.16), at ® = 0. Then, the first order Lagrangian

_ _ 1
L=1InQ+ Uyp® + Uy, Qzl—UTU+§|UTaAU|2, (B.1)

leads to the following equations of motion for U’s and U’s:

Uy + (0aD)o(UTeh ) /4 = U+ (6 U)* (0T o 4U) /4
0 = T;Z)aa QO

= ¢a, (B2)

where 1) is a cotangent vector at ® = 0 (it is useful to reserve the notation ¥ for a one-form
at a generic point ® of the base manifold). These equations imply

ol = =gt~ Wloaw=—5", (B.3)
and also

1 o 10 o (1. 00\ -

1TVl oayl —<5+ a ) : (B4)

By construction, the correspondence between the tangent and cotangent variables should
be such that U — 0 < ¢ — 0. This means that we have to choose the “plus” solution

of (B4), that is

Utu 1 1 - 1
L Ay Lo (B5)

Now, the results obtained above can be used to express €2 via 1 and its conjugate. By

definition, we have

11 U 1 |eToayf (B.6)
Q02 02 8 Q ’ '
This is equivalent to
1 A\? A2 1 oo
— ) == _cZ B.
(5-3) =T s ot (8.7
where
1 1 - 1
A= 5T \/Z + 9Ty + §‘¢TUA1/J‘2 : (B.8)

Since for ¥ — 0 we should have 2 — 1, it is necessary to choose the “plus” solution

of (B.A), that is
1 A A2 1 A1 -
[ = T 2 = _ T
Q 2+\/4 8\¢ oAl 2+2\/A+¢ ) . (B.9)

- 12 —



The above consideration corresponds to the origin, ® = 0, of the base manifold. To extend

these results to an arbitrary point ® of the base manifold, we should replace

DT — (g71)% 0,

1 1, _ Lag = e
ngampy? —5(g Do wiy,)? + ZRaﬁg\paqfﬁxpymé . (B.10)

As a result, we arrive at ([.17).
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