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1. Introduction

The intimate relation between the number of supersymmetries and the target space geome-

try for supersymmetric sigma model [1] has been fruitfully exploited over the years. Here we

are interested in the four-dimensional N = 2 models whose target space is hyperkähler [2].

There are two methods for constructing new models from old ones; the Legendre

transform and the hyperkähler reduction [3, 4], both of which have been reformulated in

the manifest N = 2 supersymmetric setting of projective superspace.

Projective superspace extends superspace at each point by an additional bosonic coor-

dinate ζ which is a projective coordinate on CP 1; actions are written using contour integrals

over ζ, and reality conditions are imposed using complex conjugation of ζ composed with

the antipodal map [5 – 8].

In a recent paper [9], we constructed, building in part on earlier work [10, 11], N = 2

supersymmetric models on the tangent bundles of a large number of the Hermitian sym-

metric spaces as well as, using the generalized Legendre transform [6], the hyperkähler

metrics on the corresponding cotangent bundles. Our approach rested on finding solutions

to the N = 2 projective superspace auxiliary field equations in Kähler normal coordinates

at a point and then extending the solutions using cleverly chosen coset representatives.

Although this method is perfectly viable, it becomes very cumbersome when more com-

plicated spaces involving the exceptional groups are considered. For this reason we have

changed the perspective in this paper. Our discussion is based on the solution to the aux-

iliary field equations originally described in [10, 11]. Starting from this solution and the

duly modified second supersymmetry transformation allows us to completely determine the

tangent-bundle action. We also describe how to find the dual cotangent-bundle action.
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As illustrations of our method, we rederive some of the results in [9]. As a new

application, we present a model on the tangent bundle of E6/SO(10)×U(1) as well as the

hyperkähler potential on the corresponding cotangent bundle.

The organization of the paper is as follows. In section two we describe the back-

ground material on N = 2 sigma models formulated using projective superspace. Our

general construction is presented in section three. Section four contains the application to

E6/SO(10)×U(1), and in section five we give an alternative description of our Lagrangian,

which leads to very direct relations to previous results but seems to have a more limited

applicability. Examples are found in section five and in appendix A. Appendix B contains

an explicit derivation of a relation used in section four.

2. Background material on N = 2 sigma models

We are interested in a family of 4D N = 2 off-shell supersymmetric nonlinear sigma-models

that are described in ordinary N = 1 superspace by the action1

S[Υ, Ῠ] =
1

2πi

∮

dζ

ζ

∫

d8z K
(

ΥI(ζ), ῨJ̄(ζ)
)

. (2.1)

The action is formulated in terms of the so-called polar multiplet [6, 7] (see also [8]), one of

the most interesting N = 2 multiplets living in projective superspace. The polar multiplet

is described by an arctic superfield Υ(ζ) and antarctic superfield Ῠ(ζ) that are generated

by an infinite set of ordinary N = 1 superfields:

Υ(ζ) =
∞
∑

n=0

Υnζn = Φ + Σ ζ + O(ζ2) , Ῠ(ζ) =
∞

∑

n=0

Ῡn(−ζ)−n . (2.2)

Here Φ is chiral, Σ complex linear,

D̄.

α
Φ = 0 , D̄2Σ = 0 , (2.3)

and the remaining component superfields are unconstrained complex superfields. The

above theory occurs as a minimal N = 2 extension of the general four-dimensional N = 1

supersymmetric nonlinear sigma model [1]

S[Φ, Φ̄] =

∫

d8z K(ΦI , Φ̄J̄) , (2.4)

with K the Kähler potential of a Kähler manifold M.

The extended supersymmetric sigma model (2.1) inherits all the geometric features of

its N = 1 predecessor (2.4). The Kähler invariance of the latter,

K(Φ, Φ̄) −→ K(Φ, Φ̄) + Λ(Φ) + Λ̄(Φ̄) (2.5)

turns into

K(Υ, Ῠ) −→ K(Υ, Ῠ) + Λ(Υ) + Λ̄(Ῠ) (2.6)

1The study of such models in this context was initiated in [12, 10, 11]. They correspond to a subclass

of the general hypermultiplet theories in projective superspace [6, 7].
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for the model (2.1). A holomorphic reparametrization of the Kähler manifold,

ΦI −→ f I
(

Φ
)

, (2.7)

has the following counterpart

ΥI(ζ) −→ f I
(

Υ(ζ)
)

(2.8)

in the N = 2 case. Therefore, the physical superfields of the N = 2 theory

ΥI(ζ)
∣

∣

∣

ζ=0
= ΦI ,

dΥI(ζ)

dζ

∣

∣

∣

ζ=0
= ΣI , (2.9)

should be regarded, respectively, as coordinates of a point in the Kähler manifold and a

tangent vector at the same point. Thus the variables (ΦI ,ΣJ) parametrize the tangent

bundle TM of the Kähler manifold M [12].

To describe the theory in terms of the physical superfields Φ and Σ only, all the auxil-

iary superfields have to be eliminated with the aid of the corresponding algebraic equations

of motion
∮

dζ

ζ
ζn ∂K(Υ, Ῠ)

∂ΥI
=

∮

dζ

ζ
ζ−n ∂K(Υ, Ῠ)

∂ῨĪ
= 0 , n ≥ 2 . (2.10)

Let Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ, Σ̄) denote a unique solution subject to the initial conditions

Υ∗(0) = Φ ,
.

Υ∗(0) = Σ . (2.11)

For a general Kähler manifold M, the auxiliary superfields Υ2,Υ3, . . . , and their con-

jugates, can be eliminated only perturbatively. Their elimination can be carried out using

the ansatz [13]

ΥI
n =

∞
∑

p=0

GI
J1...Jn+p L̄1...L̄p

(Φ, Φ̄)ΣJ1 . . . ΣJn+p Σ̄L̄1 . . . Σ̄L̄p , n ≥ 2 . (2.12)

Upon elimination of the auxiliary superfields, the action (2.1) takes the form [10, 11]

Stb[Φ,Σ] =

∫

d8z

{

K
(

Φ, Φ̄
)

+

∞
∑

n=1

LI1···InJ̄1···J̄n

(

Φ, Φ̄
)

ΣI1 . . . ΣInΣ̄J̄1 . . . Σ̄J̄n

}

≡

∫

d8z

{

K
(

Φ, Φ̄
)

+

∞
∑

n=1

L(n)
(

Φ, Φ̄,Σ, Σ̄
)

}

, (2.13)

where LIJ̄ = −gIJ̄

(

Φ, Φ̄
)

and the tensors LI1···InJ̄1···J̄n
for n > 1 are functions of the

Riemann curvature RIJ̄KL̄

(

Φ, Φ̄
)

and its covariant derivatives. Each term in the action

contains equal powers of Σ and Σ̄, since the original model (2.1) is invariant under rigid

U(1) transformations [10]

Υ(ζ) 7→ Υ(eiαζ) ⇐⇒ Υn(z) 7→ einαΥn(z) . (2.14)

The complex linear tangent variables Σ’s in (2.13) can be dualized into chiral one-

forms, in accordance with the generalized Legendre transform [6]. The target space for the

model thus obtained is (an open domain of the zero section) of the cotangent bundle of the

Kähler manifold M [10].
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3. General construction

In what follows, we restrict our consideration to the case when M is a Hermitian symmetric

space, hence

∇LRI1J̄1I2J̄2
= ∇̄L̄RI1J̄1I2J̄2

= 0 . (3.1)

Then, the algebraic equations of motion (2.10) are known to be equivalent to the holomor-

phic geodesic equation (with complex evolution parameter) [10, 11]

d2ΥI
∗(ζ)

dζ2
+ ΓI

JK

(

Υ∗(ζ), Φ̄
) dΥJ

∗ (ζ)

dζ

dΥK
∗ (ζ)

dζ
= 0 , (3.2)

under the same initial conditions (2.11). Here ΓI
JK(Φ, Φ̄) are the Christoffel symbols for

the Kähler metric gIJ̄(Φ, Φ̄) = ∂I∂J̄K(Φ, Φ̄). In particular, we have

ΥI
2 = −

1

2
ΓI

JK

(

Φ, Φ̄
)

ΣJΣK . (3.3)

According to the principles of projective superspace [6, 7], the action (2.1) is invariant

under N = 2 supersymmetry transformations

δΥ(ζ) = i
(

εα
i Qi

α + ε̄i
α̇Q̄α̇

i

)

Υ(ζ) (3.4)

when Υ(ζ) is viewed as a N = 2 superfield. However, since the action is given in N = 1

superspace, it is only the N = 1 supersymmetry which is manifestly realized. The second

hidden supersymmetry can be shown to act on the physical superfields Φ and Σ as follows

(see, e.g., [8]):

δΦ = ε̄.
α
D̄
.

αΣ , δΣ = −εαDαΦ + ε̄.
α
D̄
.

αΥ2 . (3.5)

Upon elimination of the auxiliary superfields, the action (2.13), which is associated with

the hermitian symmetric space M, is invariant under

δΦI = ε̄.
α
D̄
.

αΣI , δΣI = −εαDαΦI −
1

2
ε̄.
α
D̄
.

α
{

ΓI
JK

(

Φ, Φ̄
)

ΣJΣK
}

. (3.6)

It turns out that the requirement of invariance under these transformations allows one to

uniquely determine, by making use of (3.1), the tangent-bundle action (2.13). One finds

L(1) = −gIJ̄

(

Φ, Φ̄
)

ΣIΣ̄J̄ ,

L(n+1) ≡ LI1···In+1J̄1···J̄n+1
ΣI1 . . . ΣIn+1Σ̄J̄1 . . . Σ̄J̄n+1 (3.7)

= −
n

2(n + 1)
LI1···In−1LJ̄1···J̄n

ΣIn+1Σ̄J̄n+1 RIn+1J̄n+1In

LΣI1 . . . ΣInΣ̄J̄1 . . . Σ̄J̄n .

It is useful to introduce (conjugate to each other) first-order differential operators

RΣ,Σ̄ = −
1

2
ΣKΣ̄L̄ RKL̄I

J
(

Φ, Φ̄
)

ΣI ∂

∂ΣJ
,

R̄Σ,Σ̄ =
1

2
ΣKΣ̄L̄ RKL̄Ī

J̄
(

Φ, Φ̄
)

Σ̄Ī ∂

∂Σ̄J̄
= −

1

2
ΣKΣ̄L̄ RKL̄

J̄
Ī

(

Φ, Φ̄
)

Σ̄Ī ∂

∂Σ̄J̄
. (3.8)
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Since the metric and the curvature tensor are covariantly constant, we have

[∇K , ∇̄L̄]LI1···InJ̄1···J̄n
= 0 , (3.9)

and hence

RΣ,Σ̄ L(n) = R̄Σ,Σ̄ L(n) . (3.10)

Now, the second relation in (3.7) can be rewritten as follows:

L(n+1) =
1

n + 1
RΣ,Σ̄ L(n) . (3.11)

This leads to

L
(

Φ, Φ̄,Σ, Σ̄
)

=

∞
∑

n=1

LI1···InJ̄1···J̄n

(

Φ, Φ̄
)

ΣI1 . . . ΣInΣ̄J̄1 . . . Σ̄J̄n =

∞
∑

n=1

L(n)

= −gIJ̄Σ̄J̄ eRΣ,Σ̄ − 1

RΣ,Σ̄

ΣI . (3.12)

It is useful to rewrite this Lagrangian using an auxiliary variable t:

L
(

Φ, Φ̄,Σ, Σ̄
)

= −

∫ 1

0
dt gIJ̄ Σ̄J̄etRΣ,Σ̄ΣI . (3.13)

The relations (3.7) can be shown to be equivalent to the first-order differential equation

1

2
RKJ̄L

I ∂L

∂ΣI
ΣKΣL +

∂L

∂Σ̄J̄
+ gIJ̄ ΣI = 0 (3.14)

which is obeyed by L
(

Φ, Φ̄,Σ, Σ̄
)

given in (3.12). Indeed, the action (2.13) varies under (3.6)

as follows:

δStb[Φ,Σ] =

∫

d8z

{

∂L

∂ΦI
−

∂L

∂ΣK
ΓK

IJΣJ

}

ε̄.
α
D̄
.

αΣI

−

∫

d8z

{

1

2
RKJ̄L

I ∂L

∂ΣI
ΣKΣL +

∂L

∂Σ̄J̄
+ gIJ̄ ΣI

}

ε̄.αD̄
.

αΦ̄J̄ + c.c. (3.15)

Here the variation in the first line vanishes, since the curvature is covariantly constant.

To construct a dual formulation, consider the first-order action

S =

∫

d8z
{

K
(

Φ, Φ̄
)

+ L
(

Φ, Φ̄,Σ, Σ̄
)

+ ΨI ΣI + Ψ̄ĪΣ̄
Ī
}

, (3.16)

where the tangent vector ΣI is now complex unconstrained, while the one-form Ψ is chiral,

D̄.

αΨI = 0. This action can be shown to be invariant under the following supersymmetry

transformations:

δΦI =
1

2
D̄2

{

εθ ΣI
}

,

δΣI = −εαDαΦI −
1

2
ε̄.αD̄

.

α
{

ΓI
JK

(

Φ, Φ̄
)

ΣJΣK
}

−
1

2
εθ ΓI

JK

(

Φ, Φ̄)ΣJD̄2ΣK ,

δΨI = −
1

2
D̄2

{

εθ KI

(

Φ, Φ̄)
}

+
1

2
D̄2

{

εθ ΓK
IJ

(

Φ, Φ̄
)

ΣJ
}

ΨK . (3.17)
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Varying Σ’s and their conjugates in (3.16) using (3.13) and properties of the curvatures of

Hermitian symmetric spaces gives

Ψ̄J̄ = gIJ̄ eRΣ,Σ̄ΣI ,

ΨI = gIJ̄ eR̄Σ,Σ̄Σ̄J̄ . (3.18)

Inverting these relations should lead to the cotangent-bundle action

Sctb[Φ,Ψ] =

∫

d8z
{

K
(

Φ, Φ̄
)

+ H
(

Φ, Φ̄,Ψ, Ψ̄
)

}

, (3.19)

where

H
(

Φ, Φ̄,Ψ, Ψ̄
)

=

∞
∑

n=1

HI1···InJ̄1···J̄n

(

Φ, Φ̄
)

ΨI1 . . . ΨIn
Ψ̄J̄1

. . . Ψ̄J̄n
,

HIJ̄
(

Φ, Φ̄
)

= gIJ̄
(

Φ, Φ̄
)

. (3.20)

On general grounds, the cotangent-bundle action should be invariant under the super-

symmetry transformations induced from (3.17)

δΦI =
1

2
D̄2

{

εθ ΣI
(

Φ, Φ̄,Ψ, Ψ̄
)}

,

δΨI = −
1

2
D̄2

{

εθ KI

(

Φ, Φ̄)
}

+
1

2
D̄2

{

εθ ΓK
IJ

(

Φ, Φ̄
)

ΣJ
(

Φ, Φ̄,Ψ, Ψ̄
)

}

ΨK , (3.21)

with

ΣI
(

Φ, Φ̄,Ψ, Ψ̄
)

=
∂

∂ΨI
H

(

Φ, Φ̄,Ψ, Ψ̄
)

. (3.22)

The requirement of invariance under such transformations can be shown to be equivalent

to the following nonlinear equation on H:

ΣI gIJ̄ −
1

2
ΣKΣL RKJ̄L

I ΨI = Ψ̄J̄ . (3.23)

This equation also follows directly from (3.14) using the definition of the Ψ’s, or if one wants,

as a consequence of the superspace Legendre transform. (It can be explicitly checked that

the relation is satisfied for the expressions in (3.18), as it should).

The relation (3.23) allows us to uniquely reconstruct H
(

Φ, Φ̄,Ψ, Ψ̄
)

formally defined

in (3.20).

As a simple illustration of the formalism developed, in appendix A we re-derive the

model on the tangent bundle of CPn. The actual power of our method is revealed in next

section where it is applied to derive a N = 2 supersymmetric sigma model on the tangent

bundle of E6/SO(10) × U(1).

– 6 –
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4. The hermitian symmetric space E6/ SO(10) × U(1)

The Kähler potential for the hermitian symmetric space E6/SO(10)×U(1) was computed

by several groups [14 – 17] in different but equivalent forms. Here we will use the Kähler

potential derived in ref. [17] with the aid of the techniques developed in [18]. In order to

comply with the notation adopted in [17], we will use Greek letters to label indices, lower

indices for base-space (ΦI → Φα) and tangent (ΣI → Σα) variables, while upper indices

will be used for one-forms (ΨI → Ψα).

Locally, the symmetric space E6/SO(10)×U(1) can be described by complex variables

Φα transforming in the spinor representation 16 of SO(10) and their conjugates.

Φα , Φ̄α := (Φα)∗ , α = 1, . . . , 16 . (4.1)

The Kähler potential is

K(Φ, Φ̄) = ln

(

1 + Φ̄αΦα +
1

8
(Φ̄α(σA)αβΦ̄β)(Φγ(σ†

A)γδΦδ)

)

, A = 1, . . . 10 (4.2)

where (σA)αβ = (σA)βα are the 16 × 16 sigma-matrices which generate, along with their

Hermitian-conjugates, (σ†
A)αβ , the ten-dimensional Dirac matrices in the Weyl representa-

tion. The sigma-matrices obey the anti-commutation relations

(σAσ†
B + σBσ†

A) β
α = 2δABδ β

α . (4.3)

The Kähler metric can be shown to be

gα
β =

∂2K

∂Φα∂Φ̄β
=

1

Z

{

δ β
α +

1

2
(σA)αγΦ̄γ(σ†

A)βδΦδ

+
1

Z

(

− Φ̄αΦβ−
1

4
Φ̄α(σA)βγΦ̄γ(ΦTσ†

AΦ)−
1

4
(σ†

A)αδΦδΦβ(Φ̄TσAΦ̄)

−
1

16
(σ†

B)αδΦδ(σA)βγΦ̄γ(ΦTσ†
AΦ)(Φ̄TσBΦ̄)

)

}

, (4.4)

where Z = 1+Φ̄TΦ+ 1
8(ΦTσ†

AΦ)(Φ̄TσAΦ̄). Here we have used the fact that σA is symmetric.

Let us calculate the Lagrangian (3.12) for the case under consideration. In our notation,

the first-order differential operator defined in (3.12) is

RΣ,Σ̄ = −
1

2
ΣαΣ̄βΣγRα γ

β δ(g
−1)δǫ

∂

∂Σǫ
. (4.5)

where (g−1)βα = (gα
β)−1 is the inverse metric of gα

β, that is gα
γ(g−1)γβ = δα

β. Since we are

considering a symmetric space, it is actually sufficient to carry out the calculations of our

interest at a particular point, say at Φ = 0. The Riemann tensor at Φ = 0 can be shown

to be

Rα γ
β δ

∣

∣

∣

Φ=0
= ∂g∂δg

α
β − (g−1)λκ∂κgα

β∂λgγ
δ

∣

∣

∣

Φ=0

= −δ α
δ δ γ

β +
1

2
(σA)βδ(σ

†
A)αγ − δ α

β δ γ
δ . (4.6)

– 7 –
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Now, simple calculations give

RΣ,Σ̄Σα = |Σ|2Σα −
1

4
(Σ̄TσA)α(ΣTσ†

AΣ) ,

(RΣ,Σ̄)2Σα = 2|Σ|4Σα −
1

2
(Σ̄TσA)α|Σ|2(ΣTσ†

AΣ) −
1

4
Σα|Σ

Tσ†
AΣ|2 ,

(RΣ,Σ̄)3Σα = 6|Σ|6Σα −
3

2
|Σ|4(Σ̄TσA)α(ΣTσ†

AΣ) −
3

2
Σα|Σ|2|ΣTσ†

AΣ|2

+
3

16
(Σ̄TσA)α(ΣTσ†

AΣ)|ΣTσ†
BΣ|2 , (4.7)

where |Σ|2 = Σ̄αΣα and |ΣTσ†
AΣ|2 =

(

ΣTσ†
AΣ

)

(

Σ̄TσAΣ̄
)

. Here we have used the following

identity

(

σ†
AΦ

)α (

Φσ†
AΦ

)

= 0 (4.8)

that follows from the Fierz identity

(

ǫσ†
Aψ

) (

ψσ†
Aη

)

= −
1

2

(

ǫσ†
Aη

) (

ψσ†
Aψ

)

. (4.9)

Making use of the above results gives

L(Φ = 0, Φ̄ = 0,Σ, Σ̄) = −gα
βΣ̄β eRΣ,Σ̄ − 1

RΣ,Σ̄

Σα

∣

∣

∣

∣

∣

Φ=Φ̄=0

= −|Σ|2 −
1

2
|Σ|4 +

1

8
|ΣTσ†

AΣ|2 −
1

3
|Σ|6 +

1

8
|Σ|2|ΣTσ†

AΣ|2

−
1

4
|Σ|8 +

1

8
|Σ|4|ΣTσ†

AΣ|2 −
1

128
|ΣTσ†

AΣ|2|ΣTσ†
BΣ|2 + · · · (4.10)

Looking at the expression obtained it is tempting to conjecture

L(Φ = 0, Φ̄ = 0,Σ, Σ̄) = ln

(

1 − |Σ|2 +
1

8
|ΣTσ†

AΣ|2
)

. (4.11)

The latter relation extends to an arbitrary point Φ of the base manifold by replacing

|Σ|2 → gα
βΣαΣ̄β ,

1

8
|ΣTσ†

AΣ|2 →
1

2
(gα

βΣαΣ̄β)2 +
1

4
Rα γ

β δΣαΣ̄βΣγΣ̄δ . (4.12)

Then one gets

L(Φ, Φ̄,Σ, Σ̄) = −gα
βΣ̄β eRΣ,Σ̄ − 1

RΣ,Σ̄

Σα

= ln

(

1 − gα
βΣαΣ̄β +

1

2
(gα

βΣαΣ̄β)2 +
1

4
Rα γ

β δΣαΣ̄βΣγΣ̄δ

)

. (4.13)

This is actually the correct result for L(Φ, Φ̄,Σ, Σ̄). Indeed, one can check that the r.h.s.

of (4.13) satisfies the master equation (3.14) which in the present case reads

1

2
Rα γ

β δ(g
−1)δǫ

∂L

∂Σǫ
ΣαΣγ +

∂L

∂Σ̄β
+ gα

βΣα = 0 . (4.14)
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In order to prove this claim, it is sufficient to restrict our consideration to Φ = 0. For the

first term in the l.h.s. of (4.14), one finds

1

2
Rα γ

β δ(g
−1)δǫ

∂L

∂Σǫ
ΣαΣγ

∣

∣

∣

∣

Φ=0

=
1

Z

(

2Σβ|Σ|2−
1

2
(σAΣ̄)β(ΣTσ†

AΣ)−
1

4
Σβ|Σ

Tσ†
AΣ|2

)

,(4.15)

and this contribution exactly cancels against the other terms in (4.14).

Let us dualize the tangent-bundle action. For this purpose we consider the following

first-order action

S =

∫

d8z

{

K(Φ, Φ̄) + ln

(

1 − gα
βUαŪβ +

1

2
(gα

βUαŪβ)2 +
1

4
Rα γ

β δUαŪβUγŪ δ

)

+UαΨα + ŪαΨ̄α

}

, (4.16)

where the tangent variables Uα are complex unconstrained superfields, and the one-forms

Ψα are chiral superfields, D̄α̇Ψ = 0. The variables U ’s and Ū ’s can be eliminated with the

aid of their algebraic equations of motion. This turns the superfield Lagrangian into the

hyperkähler potential

H(Φ, Φ̄,Ψ, Ψ̄) = K(Φ, Φ̄)−ln
(

Λ+
√

Λ + (g−1)αβΨβΨ̄α

)

+Λ+
√

Λ+(g−1)αβΨβΨ̄α

−
2((g−1)αβΨβΨ̄α)2 + R̃α γ

β δΨ̄αΨβΨ̄γΨδ

Λ +
√

Λ + (g−1)αβΨβΨ̄α

, (4.17)

where R̃α γ
β δ = (g−1)αα′(g−1)β

′

β(g−1)γγ′(g−1)δ
′

δR
α′ γ′

β′ δ′ , and

Λ =
1

2
+

√

1

4
+ (g−1)αβΨβΨ̄α + 2((g−1)αβΨβΨ̄α)2 + R̃α γ

β δΨ̄αΨβΨ̄γΨδ . (4.18)

The derivation of the above results is given in appendix B.

Similar to eq. (4.14) in the tangent-bundle formulation, one can check that the hy-

perkähler potential (4.17) satisfies the equation (3.23), which in the present case takes the

form

Σαgα
β −

1

2
ΣαΣγRα γ

β δ(g
−1)δǫΨ

ǫ = Ψ̄β . (4.19)

To prove this, we again set Φ = 0. Then, the l.h.s. in (4.19) becomes

Σβ −
1

2

(

−2(ΣαΨα)Σβ +
1

2
(σAΨ)β(ΣTσ†

AΣ)

)

. (4.20)

Making here use of (B.2), we can express Ψ in terms of Σ. Then we have

Σβ −
1

2
ΣαΣγRα γ

β δ(g
−1)δǫΨ

ǫ

∣

∣

∣

∣

Φ=0

=
1

Ω

(

Σβ −
1

4
(σAΣ̄)β(ΣTσ†

AΣ)

)

, (4.21)

where Ω is given in (B.1). Because of (B.2), the expression obtained is exactly Ψ̄β at Φ = 0.
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5. An alternative formulation

In this section we give a reformulation of the Lagrangian defined by (3.7) which more

directly relates it to our previous results. The reformulation requires certain identities to

be satisfied for products of curvatures; we have not been able to determine if these identities

are for a general Hermitean symmetric space. We define the operator R by

R :=
1

2
ΣaΣ̄b̄R d

ab̄c
M c

d (5.1)

where M is the generator of the relevant structure group and acts on Σ as a transformation

of a vector: [Xa
b M b

a,Σc] = Xc
bΣ

b. Here a and ā are tangent space indices. Using this we

may in certain cases re-write the Lagrangian (3.12) as

L(Φ, Φ̄,Σ, Σ̄) = −ηab̄Σ̄
b̄ ln(1 + R)R−1Σa (5.2)

where ηab̄ is the tangent space metric. The inverse R
−1 is formal at this stage, but in the

concrete examples that we want to consider it is always possible to make sense of it. The

structure (5.2) is possible when the curvature satisfies

RNJ̄1MJ̄2
R N

I1J̄3I2
R M

I4J̄4I3
∝ RNJ̄1I1J̄2

R N
I2J̄3M

R M
I4J̄4I3

(5.3)

when symmetrized in I1 . . . I4 and in J̄1 . . . J̄4, and similar relations for higher products of

curvatures. This is indeed true for the case of CPn discussed in appendix A. We find that,

at the origin,

RR
−1Σa = Σa (5.4)

if we take

R
−1 = −

r2

ΣΣ̄
δ c
b M b

c (5.5)

which inserted in (5.2) leads to the Lagrangian

L(Φ, Φ̄,Σ, Σ̄) = −
r2

ΣΣ̄
Σ̄a ln(1 + R)Σa (5.6)

where all contractions and lowering of indices is done using ηab̄ = δab and we have

Rab̄cd̄ = −
1

r2
(δabδcd + δadδbc) , (5.7)

all evaluated at the origin (see appendix A for more details). Evaluating the expression (5.6)

and re-expressing the result at an arbitrary point, we recover the standard form of the

Lagrangian; (A.6).

Another case where the appropriate identities are satisfied is for the SO(n+2)/SO(n)×

SO(2)-model discussed in section 6 in [9]. Here the metric at a point is as in the previous

example, the curvature tensor at the origin is

Rab̄cd̄ = 2 (−δabδcd + δacδbd − δadδbc) , a = 1, . . . , n . (5.8)

– 10 –
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We may take

R
−1 = −

1

Σ2Σ̄2
ΣbΣ̄

cM b
c (5.9)

to yield the following form of the Lagrangian

L(Φ, Φ̄,Σ, Σ̄) =
1

Σ̄2
Σ̄a ln(1 + R)Σ̄a . (5.10)

Evaluating the expression (5.10) and re-expressing the result at an arbitrary point, we

recover the standard form of the Lagrangian [9].
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A. Example: complex projective space

As a simple example, consider the complex projective space CPn = SU(n + 1)/U(n) for

which we have

K(Φ, Φ̄) = r2 ln

(

1 +
1

r2
ΦLΦL

)

, gIJ̄(Φ, Φ̄) =
r2δIJ

r2 + ΦLΦL
−

r2ΦIΦJ

(r2 + ΦLΦL)2
, (A.1)

where I, J̄ = 1, . . . , n. It is sufficient to compute the Riemann curvature at Φ = 0

RI1J̄1I2J̄2

∣

∣

∣

Φ=0
= KI1J̄1I2J̄2

∣

∣

∣

Φ=0
= −

1

r2

{

δI1J1
δI2J2

+ δI1J2
δI2J1

}

, (A.2)

with all results below corresponding to the choice Φ = 0. One gets

ΣI1Σ̄J̄1ΣI2 RI1J̄1I2J̄2
= −

2

r2
|Σ|2ΣJ2 , |Σ|2 = δIJΣIΣ̄J̄ , (A.3)

and hence

RΣ,Σ̄ =
1

r2
|Σ|2 ΣL ∂

∂ΣL
. (A.4)

From here

(

RΣ,Σ̄

)n
ΣI = n!

|Σ|2n

r2n
ΣI (A.5)

and hence

−gIJ̄ Σ̄J̄ eRΣ,Σ̄ − 1

RΣ,Σ̄

ΣI = r2 ln

(

1 −
1

r2
gIJ̄(Φ, Φ̄) ΣIΣ̄J̄

)

. (A.6)

This agrees with the previous calculations [11, 19].
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B. Derivation of (4.17)

This appendix is devoted to the derivation of the hyperkähler potential (4.17). Since

the base manifold is symmetric space, it is sufficient to perform the dualization, for the

action (4.16), at Φ = 0. Then, the first order Lagrangian

L = ln Ω + Uαψα + Ūαψ̄α , Ω = 1 − ŪTU +
1

8
|UTσAU |2 , (B.1)

leads to the following equations of motion for Ū ’s and U ’s:

−Uα + (σAŪ)α(UTσ†
AU)/4

Ω
= ψ̄α ,

−Ūα + (σ†
AU)α(ŪTσAŪ)/4

Ω
= ψα , (B.2)

where ψ is a cotangent vector at Φ = 0 (it is useful to reserve the notation Ψ for a one-form

at a generic point Φ of the base manifold). These equations imply

ψ̄Tσ†
Aψ̄ =

UTσ†
AU

Ω
, ψTσAψ =

ŪTσAŪ

Ω
, (B.3)

and also

1

4
+ ψ̄Tψ +

1

2
|ψTσAψ|2 =

(

1

2
+

ŪTU

Ω

)2

. (B.4)

By construction, the correspondence between the tangent and cotangent variables should

be such that U → 0 ⇔ ψ → 0. This means that we have to choose the “plus” solution

of (B.4), that is

ŪTU

Ω
= −

1

2
+

√

1

4
+ ψ̄Tψ +

1

2
|ψTσAψ|2 . (B.5)

Now, the results obtained above can be used to express Ω via ψ and its conjugate. By

definition, we have

1

Ω
=

1

Ω2
−

ŪTU

Ω2
+

1

8

∣

∣

∣

∣

ψTσAψ

Ω

∣

∣

∣

∣

2

, (B.6)

This is equivalent to

(

1

Ω
−

Λ

2

)2

=
Λ2

4
−

1

8
|ψTσAψ|2 , (B.7)

where

Λ =
1

2
+

√

1

4
+ ψ̄Tψ +

1

2
|ψTσAψ|2 . (B.8)

Since for ψ → 0 we should have Ω → 1, it is necessary to choose the “plus” solution

of (B.7), that is

1

Ω
=

Λ

2
+

√

Λ2

4
−

1

8
|ψTσAψ|2 =

Λ

2
+

1

2

√

Λ + ψ̄Tψ . (B.9)
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The above consideration corresponds to the origin, Φ = 0, of the base manifold. To extend

these results to an arbitrary point Φ of the base manifold, we should replace

ψ̄Tψ → (g−1)αβΨβΨ̄α ,

1

8
|ψTσAψ|2 →

1

2
((g−1)αβΨβΨ̄α)2 +

1

4
R̃α γ

β δΨ̄αΨβΨ̄γΨδ . (B.10)

As a result, we arrive at (4.17).
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[5] A. Karlhede, U. Lindström and M. Roček, Self-interacting tensor multiplets in N = 2

superspace, Phys. Lett. B 147 (1984) 297.
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